
HiFi: Hybrid Rule Placement for Fine-Grained
Flow Management in SDNs

Gongming Zhao1;3 Hongli Xu∗1;3 Jingyuan Fan2 Liusheng Huang1;3 Chunming Qiao2
1School of Computer Science and Technology, University of Science and Technology of China

2Department of Computer Science and Engineering, University at Buffalo, The State University of New York
3Suzhou Institute for Advanced Study, University of Science and Technology of China

Abstract—Fine-grained flow management is useful in many
practical applications, e.g., resource allocation, anomaly detec-
tion and traffic engineering. However, it is difficult to provide
fine-grained management for a large number of flows in
SDNs due to switches’ limited flow table capacity. While using
wildcard rules can reduce the number of flow entries needed, it
cannot fully ensure fine-grained management for all the flows
without degrading application performance. In this paper, we
design and implement HiFi, a system that achieves fine-grained
management with a minimal number of flow entries. To this
end, HiFi takes a two-step approach: wildcard entry installment
and application-specific exact-match entry installment. How
to optimally install wildcard and exact-match flow entries,
however, is intractable. Therefore, we design approximation
algorithms with bounded factors to solve these problems. We
consider how to achieve network-wide load balancing via fine-
grained flow management as a case study. Both experimental
and simulation results show that HiFi can reduce the number
of required flow entries by about 45%-69% and reduce the
control overhead by 28%-50% compared with the state-of-the-
art approaches for achieving fine-grained flow management.

I. INTRODUCTION

Compared with coarse-grained flow management, fine-
grained flow management has irreplaceable advantages for
some important applications in a network [1] [2]. For ex-
ample, researchers have shown that it can improve the
success ratio of portscan detection by about 35% through
management of small (mice) flows or implementing fine-
grained flow management [3]. It is also useful for resource
allocation [4], anomaly detection [3] [5], traffic engineering
[6] [7], and application identification [8], as well as load-
balancing [9].
SDN offers a great opportunity for fine-grained flow man-
agement [2] [10]. In an SDN, when a packet arrives at an
SDN switch, the switch will match this packet to all rules
in the flow table. If there is a matched rule, the switch
will forward this packet according to the rule’s operation
field. Otherwise, the switch will report the packet header
to the controller, which determines the route for this flow
and installs rules on the switch and on the other ones along
the path. In this way, the controller can perform fine-grained
management of the flow by deploying per-flow rule (e.g.,
identified by the 5-tuple, we call it exact-match rule) along its
forwarding path. [11]. In fact, if there is one exact-match rule
along its route path, the controller has a chance to control
this individual flow by modifying this exact-match rule.

However, it is far from trivial to achieve fine-grained man-
agement with SDNs in practice. R. Cohen et al. [12] propose
a method that installs exact-match entries on all switches
along the forwarding path (to be referred to as ER here
after) so as to achieve fine-grained flow management. Similar
methods have been also used in [4] [13]. However, ER will
consume a huge number of flow entries. The problem is
exacerbated due to the fact that Ternary Content Addressable
Memory, commonly used in commercial SDN switches for
storing flow tables/rules, is usually expensive, power hungry
and therefore size-limited (e.g., 16,000 entries on high-end
Broadcom Trident2 switches [12] or even 1,500 entries on HP
5406zl switches [14]). Thus, the limited flow-table brings a
critical challenge for fine-grained management in an SDN
network.

An alternative solution to save the number of flow entries
is to combine the default path and exact-match rules (to be
referred to as DER here after), as in OFFICER [15] and
HS [16]. Specifically, DER first deploys default paths for
all flows, and then installs exact-match rules for some (or
all) flows to implement fine-grained management. However,
when there is a default path from source to destination,
all matching flows will be directly forwarded to the des-
tination without notifying the controller, which makes the
fine-grained flow management difficult and increases the risk
of network attacks [5]. To derive the information of each
(individual) flow for fine-grained management, it requires
additional devices (e.g., monitor [17]) or software (e.g.,
statistical modular [18]) to be deployed in the network, which
inevitably increases the system setup and maintenance cost.

To overcome the shortcomings of the existing approaches,
in this paper, we build HiFi, a system targeted at provid-
ing fine-grained management for all flows in SDNs while
minimizing the number of flow entries that need to be
installed on switches without additional hardware and/or
software. In other words, the goal of HiFi is two-fold: 1)
ensuring that each flow will be forwarded by matching at
least one exact-match rule along the path from source to
destination; and 2) minimizing the number of flow entries
needed on switches. HiFi enables this by taking a two-
step approach: wildcard entry installment and exact-match
entry installment. Specifically, wildcard rules are installed
to limit the number of flow entries used, while exact-match
rule installment can offer application-specific fine-grained

2341
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:29:03 UTC from IEEE Xplore. Restrictions apply.

2

V3

V6V5V4

V1 V2

2 flows

2 flows

p2

p1

Fig. 1: A network scenario. There
are 2 flows from v3 to v1 and
the other 2 flows from v3 to v4.
The flow intensity is set to 1 for
simplicity. A load-balancing route
configuration is illustrated.

schemes v1 v2 v3 v4 v5 v6 max total fine-grained

ER 2 2 4 2 2 2 4 14 X
DER 1 1 3 1 1 1 3 8 partial

HiFi 1 2 3 1 1 1 3 9 X

TABLE I: Number of required entries on switches by three entry installment schemes.
ER installs exact-match entries on all switches along the forwarding path of each
flow. DER installs exact-match entries only for partial flows (not all flows). Our
scheme installs exact-match entries on part of switches along a path (i.e., v2 for p1
and v3 for p2), and the other switches along a path are installed wildcard entries.
As a result, our scheme supports fine-grained management with a small number of
entries and without additional device/software.

flow management. Together, they can provide a desirable
route for each flow from its source to destination. It is
worth noting that similar ideas have already been used in
data center networks, called Presto, where wildcard rules
and exact-match rules are installed on internal switches and
edge switches, respectively [19]. However, their solution is
only suitable for hierarchical networks (e.g., Fat-Tree [20]),
and cannot be efficiently applied to general networks (e.g.,
HyperX [21]). Even worse, an edge switch with a limited
flow-table may become a bottleneck [14]. Therefore, a more
general prototype, that can be applied to various networks and
can relieve flow-table size constraints, should be proposed.
To apply the idea of HiFi to a general network topology,
we formulate the optimal wildcard and exact-match entry
installment problems using integer linear programs (ILP)
by modeling fine-grained management requirements, flow-
table size constraints, and link capacity constraints, etc..
Unfortunately, neither problems has any optimal solutions in
polynomial time. Hence, we design approximation algorithms
to solve them, and analyze the approximation factors.
When solving the wildcard entry installment subproblem,
we also take into consideration the case where it is impossible
to provide fine-grained management for all flows in a network
simply because there are too many flows. For example,
assume that the network consists of 100 switches, and the
flow-table size of each switch is 4,000. As a result, it
contains a total of 400,000 entries in the network. When there
are 600,000 flows, there’s no way to provide fine-grained
management for all these flows. For such a case, we design
an approximation algorithm to maximize the number of flows
that can be controlled individually given the flow- table size
constraints.
Extensive simulation shows that HiFi helps to reduce the
number of required flow entries by 45%-69% and reduce the
control overhead by 28%-50% compared with the state-of-
the-art solutions.

II. MOTIVATION AND HIFI OVERVIEW
A. A Motivating Example
This section gives an example to illustrate the advantages
and disadvantages of both ER and DER. The usage of entries
is summarized in Table I.

Definition 1 (Controllable Flow): If we achieve fine-
grained management for a flow (i.e., a flow can be matched
by at least one exact-match entry), we call this as a control-
lable flow or say that this flow can be controlled.

As shown in Fig. 1, there are 4 flows in the network, 2
flows from v3 to v1 and the other 2 flows from v3 to v4. For
simplicity, the intensity of each flow is set to 1. To achieve
load balancing, the route configuration is illustrated in Fig. 1.
Specifically, 2 flows follow the path v3 → v2 → v1, and other
2 flows follow the path v3 → v6 → v5 → v4. Accordingly,
the maximum link load (i.e., 2) is minimized.

To realize this routing, ER installs an exact-match entry
on each switch along the forwarding path of each flow.
Obviously, this scheme can support fine-grained management
(i.e., 4 flows are all controllable). However, this scheme will
cost more entries, e.g., the total number of consumed entries
is 14 in the network (i.e., 3.5 entries per flow on average),
and the maximum number of consumed entries is 4 on switch
v3. Considering the limited flow entries on commodity SDN
switches, it is impractical for large-scale networks [14].

On the other hand, DER leverages the default paths to
reduce the entry cost. We assume that the default path from
v3 to v1 is v3 → v2 → v1, and the default path from v3
to v4 is v3 → v2 → v1 → v4. When the flows arrive, all
flows will be forwarded by default paths directly. In this case,
the maximum link load is 4, and no flow is controllable.
To reroute some flows and achieve better load balancing,
we should deploy additional hardware (e.g., monitor [17]) or
software (e.g., statistical modular [18]) to identify those flows
and determine their traffic statistics. Then, 2 flows will be re-
routed to path v3 → v6 → v5 → v4 by installing exact-match
entries. As a result, only two re-routed flows can achieve
fine-grained management through exact-match entries and the
total number of installed flow entries is 8 in the network.
Specifically, we need to install one wildcard entry and two
exact-match entries on switch v3. Although DER can save
flow entries, this scheme cannot fully guarantee fine-grained
management for all flows (i.e., only 2 flows are controllable).
We should note that with more exact-match rules installed,
more flows will be controllable.

2342
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:29:03 UTC from IEEE Xplore. Restrictions apply.

3

B. Our Intuition

A question immediately following the above discussion is
can we do better by combining the merits of ER and DER?
Clearly, we should use as many wildcards as possible to
save flow entries with the constraint that no flow will be
forwarded to the destination only with wildcard entries. In
the meantime, we should break the default path such that no
flow will be forwarded to the destination only with wildcard
entries. In other words, all flows should be controlled through
at least one exact-match entry to achieve fine-grained flow
control.
In Fig. 1, for flows from switch v3 to switch v1, we install
one wildcard entry to match them on switch v3 and switch v1,
respectively. When two flows, with egress switch v1, arrive at
v3, they will be directly forwarded to v2, which cannot find
a matching entry for these two flows, and therefore, this flow
will be reported to the controller, which can install two exact-
match entries on switch v2 for these two flows to achieve
fine-grained management. Similarly, for flows from switch v3
to switch v4, we install one wildcard entry on switches v4,
v5 and v6, respectively. Besides, we install two exact-match
entries on switch v3. As a result, the total number of installed
flow entries is 9, which is almost similar to that by DER.
What’s more important, our scheme can achieve fine-grained
management for all flows without additional device/software.
We call this scheme as hybrid rule placement for fine-grained
management or HiFi.

C. Architecture and Workflow of HiFi

HiFi achieves fine-grained flow management through two
main control plane modules: wildcard entry installment and
exact-match entry installment. The former periodically deter-
mines how to install/update wildcard rules (i.e., Flow-Mod)
on switches using collected traffic synopsis, while the latter
installs application-specific exact-match entries (i.e., Flow-
Mod) by processing flow requests (i.e., Packet-In) from the
data plane.
Two constraints need to be met when installing the rules:
1) a flow should reach its destination; 2) when a flow is being
forwarded to its destination, there will be at least one switch
where the flow cannot find a wildcard rule to match. Thus, the
switch will report the flow to the controller, and the controller
will in turn install an exact-match rule on this switch for
this flow. As a result, all following packets of this flow
will be controlled by this exact-match entry. One may think
that it is natural to study the joint optimization of wildcard
and exact-match entries installment. However, due to traffic
dynamics, it may not be feasible. If we update a wildcard
entry, all flows matched with this entry will be affected, and
their routes may be disrupted. Thus, it is inappropriate to
update the wildcard entries frequently. Meanwhile, the exact-
match entry installment is usually determined by application
requirements, e.g., load balancing or throughput maximiza-
tion [8], and each new-arrival flow will trigger the exact-
match installment event. Thus, it is necessary to frequently
update the exact-match entries to pursue different application
requirements.

Traffic
Synopsis

Can be
Controlled?

Execute
Alg. 1

Y (Case A)

Execute
Alg. 2

Install Wildcard
Entries

Timer
Fired

N (Case B)

(a) Wildcard entry installment triggered by timer.

Packet

Match?
Flow

Table lookup
Forward
Packet

Y

Report to the
Controller

Execute
Alg. 3

Install Exact-
match Entries

N

(b) Exact-match entry installment triggered by new-arrival packets.

Fig. 2: Illustration of the HiFi’s workflow.

In HiFi, we will trigger 1) wildcard entry installment using
timer, and 2) exact-match entry installment using packets,
which are described as follows:
Step 1 of HiFi: As shown in Fig. 2(a), when a timer
(e.g., 10min) expires, HiFi first estimates the traffic synopsis
based on traffic matrix prediction, and decides if it is feasible
for all flows to be controlled individually (which will be
discussed detailly in Section III-C). If yes, which is referred
to as case A, HiFi determines how to install wildcard entries
to minimize the maximum flow entry utilization ratio among
all switches (Section III). Otherwise, we cannot provide fine-
grained management for all flows, called case B. HiFi would
maximize the number of controllable flows subject to the
flow-table size constraint (Section IV).
Step 2 of HiFi: As illustrated in Fig. 2(b), when a packet
arrives at a switch, it will be handled by the flow table if a
matching entry exists. Otherwise, HiFi would determine how
to install exact-match entries for this flow (Section V).

III. WILDCARD ENTRY INSTALLMENT FOR CASE A

We first assume that there is a feasible solution which
allows all flows to be individually controlled (i.e., we are
dealing with case A), and address the wildcard entry install-
ment problem for case A (WEI-A). Moreover, we design
an efficient algorithm, and then analyze the approximation
performance.

A. Network Model

An SDN network typically consists of three device sets: a
cluster of controllers; an SDN switch set, V = {v1, ..., vn},
with n = |V |; and a terminal set, U = {u1, ..., um},
with m = |U |. The controllers monitor the network status,
and are responsible for route selection of all flows in the
network. The switches perform packet forwarding and traffic

2343
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:29:03 UTC from IEEE Xplore. Restrictions apply.

4

measurement for flows based on the flow entries configured
by the controller. These switches and terminals comprise the
data/forwarding plane of an SDN. Thus, on the view of the
data plane, the network topology can be modeled by a graph
G = (U ∪ V,E), where E is the link set in the data plane.
Assume that there is a set of wildcard rules, denoted
as R = {r1, r2, ..., rm′}, with m′ = |R|. For example, a
natural way for setting wildcard rules is as follows: we adopt
the destination-based wildcard rule (e.g., destination-based
OSPF method) for simplicity. Each wildcard rule ri only
specifies the destination ui, and can match all the sources
in the network. In this case, m′ is equal to the number
of destinations (e.g., m) in a network. The setting of these
wildcard rules has been widely used in different applications,
e.g., traffic engineering [14] and statistics collection [22].

B. Formulation for the WEI-A Problem

Due to the prior work of traffic matrix prediction on SDNs
[23] [24], it is reasonable to assume that we can obtain a flow
set, denoted as Π. Moreover, the set of flows passing through
switch v to destination u is denoted as Πvu, and Πu denotes
the set of flows with destination u. The OSPF path and the
destination of each flow f ∈ Π are denoted as hf and d(f),
respectively.
To achieve fine-grained management, each flow will match
at least one exact-match entry along its forwarding path. In
other words, each flow should not be forwarded by matching
wildcard entries on all switches along the path. In order to
determine how to install wildcard entries for each destination
u, we first build a tree Tu rooted at u that branches according
to the flow set Πu. For simplicity, we use the variable qvu to
denote whether the controller will install exact-match entries
on switch v for flows Πvu or not. There are two cases for
each switch v on tree Tu.
1) qvu = 0. We install a wildcard entry on switch v for
destination u. From the view of saving flow entries, it is
no need to install exact-match entries even for a selected
fraction of flows Πvu.

2) qvu = 1. The controller will install exact-match entries
on switch v for flows Πvu. Thus, it requires |Πvu| exact-
match entries on switch v, or we need to reserve |Πvu|
entries for a flow set Πvu. Note that how to deploy exact-
match entries depends on the current traffic and practical
requirements, and will be discussed in Section V.
One may think we could install a wildcard rule with
a lower priority, while installing exact-match entries with
higher priority for a selected fraction of flows in Πvu, which
potentially leads to a lower cost of flow entries on switches.
In fact, it is not practical on commodity switches. Assume
that we have installed a wildcard entry on switch v for flows
in Πvu. When a new flow arrives, flows will be forwarded
directly through switch v by matching a wildcard entry. That
means, we have no chance to install exact-match entries with
higher priority for a selected fraction of flows in Πvu on switch
v once flows arrive. Thus, we have to achieve fine-grained
management on other switches for flows in Πvu and there is

no need to install exact-match entries for a selected fraction
of flows in Πvu on switch v.
As a result, it will cost a total number b(v) of en-
tries (including wildcard entries and reserved exact-match
entries) on switch v. Each commodity switch is usually
equipped with a limited number of flow entries (e.g., 4,000
entries per switch [14]), and these entries will be shared by
routing/measurement/security functions [18] [25]. A natural
idea is to minimize the maximum number of required flow
entries among all switches. However, it may not be fair for
heterogeneous switches in the network. Thus, we expect to
minimize the maximum flow entry utilization ratio among all
switches in the network, so that the remaining flow entries on
each switch can accommodate more flows with exact-match
rules. Accordingly, we formulate this problem as follows:

min β

S.t.

∑
v∈hf q

v
d(f) ≥ 1, ∀f ∈ Π

b(v) =
∑
v∈Tu;u∈U (q

v
u · |Πvu|+ 1 − qvu), ∀v ∈ V

b(v) ≤ β · s(v), ∀v ∈ V
qvu ∈ {0, 1}, ∀v, u

(1)
The first set of inequalities denotes that each flow will match
at least one exact-match entry, which means that each flow
is controllable. The second set of equalities means that the
total number of required entries on each switch v is b(v).
Note that, qvu · |Πvu| and 1−qvu denote the number of reserved
exact-match entries and the wildcard entry on switch v
for destination u, respectively. The third set of inequalities
denotes that the number of consumed flow entries on switch
v should not exceed β · s(v), where β is the flow entry
utilization ratio and s(v) is the flow-table size on switch
v. The objective is to minimize the maximum flow entry
utilization ratio among all switches, that is, min β.

C. Algorithm Design for WEI-A

This section develops a rounding-based wildcard entry
installment algorithm to solve the WEI-A problem. The
proposed algorithm consists of three main steps. The first step
will relax the integer program, denoted as LP1, by relaxing
variable qvu. We can solve LP1 in polynomial time with a
linear program solver, and obtain the fractional solutions,
denoted as
qvu, ∀v ∈ V, u ∈ U . In the second step, the
fractional solution
qvu will be rounded to the 0-1 solution 	qvu to
decide where to install wildcard entries for each destination
u. The set of unvisited flows is denoted as Π′, initialized as all
flows in Π. Moreover, we initialize 	qvu = 0, ∀v ∈ V, u ∈ U .
We arbitrarily choose an unvisited flow, denoted as f , from
set Π′. The algorithm chooses a switch with maximum
qvd(f)
among all v ∈ hf , and set 	qvd(f) = 1. That is, we will not
install a wildcard entry on switch v for destination d(f).
Thus, all flows in set Πvd(f) can be controlled on switch v.
We update Π′ = Π′ − Πvd(f). This step will terminate when
all flows are visited. In the third step, we install wildcard
entries based on rounding solutions. For each destination u
and switch v ∈ Tu, we install one wildcard entry on switch

2344
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:29:03 UTC from IEEE Xplore. Restrictions apply.

5

v for destination u if 	qvu = 0. The algorithm is described in
Alg. 1.

Algorithm 1 Wildcard Entry Installment for WEI-A
1: Step 1: Solving the Relaxed WEI-A Problem
2: Construct the relaxed problem LP1
3: Obtain the fractional solutions
qvu, ∀v ∈ V, u ∈ U
4: Step 2: Deriving the 0-1 Solution
5: Π′ = Π
6: 	qvu = 0, ∀v ∈ V, u ∈ U
7: while Π′ ̸= Φ do
8: Arbitrarily choose an unvisited flow f from Π′

9: Choose a switch with maximum
qvd(f) among all v ∈
hf , and set 	qvd(f) = 1, Π′ = Π′ −Πvd(f)

10: Step 3: Installing Wildcard Entries
11: for Each destination u ∈ U do
12: for Each switch v ∈ Tu do
13: if 	qvu = 0 then
14: Install a wildcard entry on switch v for u

Theorem 1: The proposed algorithm can achieve the θ-
approximation for the WEI-A problem, where θ is the
maximum number of switches visited by each flow.
Due to space limit, we omit the proof of theorem 1.
Note that, after the above algorithm completes, if we find
that the total number of required flow entries on some switch
exceeds its flow-table size, it means that we cannot provide
fine-grained management for all flows due to flow-table size
constraint. We will discuss that case in Section IV.
In some practical scenarios, only a specific set of flows
(or applications) requires to be controlled with fine-grained
management. For example, in a bank network system, there
are 10 servers depositing key data, and only flows towards
these key servers should be controlled. The other flows can be
aggregated for network scalability and resource reusability.
To deal with this case, we only need to change the flow set
Π in Eq. (1) to the set of flows towards these key servers.
Then we can minimize the maximum number of required
flow entries to provide fine-grained management for these
flows. Due to space limit, we omit the detailed description
of this situation.

IV. WILDCARD ENTRY INSTALLMENT FOR CASE B
In Section III-B, we assume that the flow-table size of
each switch is enough to support all flows with fine-grained
management. However, when there are too many flows in a
large-scale network, we may not be able to provide fine-
grained management for all flows due to flow-table size
constraint. In this section, we solve the Wildcard Entry
Installment problem for case B (WEI-B).

A. Definition of the WEI-B Problem
Under this situation, we just select partial flows for fine-
grained management and others for coarse-grained manage-
ment so as to serve all flows with flow-table size constraint.
We formulate this problem as follows:

max
�

f∈Π
ξf

S.t.

ξf ≤
∑
v∈hf q

v
d(f), ∀f ∈ Π

∑
v∈Tu;u∈U (q

v
u · |Πvu|+ 1 − qvu) ≤ s(v), ∀v ∈ V

ξf , q
v
u ∈ {0, 1}, ∀f, v, u

(2)
where ξf denotes whether flow f is controllable or not. The
first set of inequalities denotes that flow f is controllable
if this flow will match at least one exact-match entry along
the path. The second set of inequalities describes that the
required flow entries on each switch v ∈ V should not exceed
its flow-table size s(v). The objective is to maximize the
number of controllable flows, which is helpful for different
applications, such as traffic engineering or attack detection
[3] [4].

B. Algorithm Design for WEI-B

We give an approximation algorithm based on 0-1 knap-
sack to solve this problem. Before algorithm description, we
consider a special case in which there is only one switch in
the network. Assume that we have installed wildcard entries
for all flows on switch v, and the number of occupied flow
entries is w(v). Then we need to replace some wildcard
entries with exact-match entries to control some flows for
fine-grained management. We can regard this special case as
the 0-1 knapsack problem [26]. More specifically, the size
of knapsack (or switch v) is the number of residual flow
entries, i.e., s(v)−w(v). For each destination u, Πvu can be
regarded as an individual object. If we install exact-match
entries for flows with destination u, then we should install
|Πvu| exact-match entries (one for each flow) and delete the
corresponding wildcard entry. Thus, it will increase |Πvu|− 1
flow entries. That is, the cost of Πvu is c(Π

v
u) = |Πvu| − 1.

Besides, the profit of each set Πvu, denoted as p(Π
v
u), is the

number of uncontrolled flows in set Πvu. It can be solved by
the previous knapsack algorithms, e.g., [27].
This algorithm consists of |V | (i.e., the number of all
switches) iterations and each iteration has two steps. In the
first step, we adopt the fully polynomial time approximation
scheme (FPTAS) algorithm [27] to solve the 0-1 knapsack
problem for each residual switch. Then we choose a switch,
denoted as v′, with the maximum profit among all the residual
switches. The FPTAS method for the 0-1 knapsack problem
also determines the value of qv

′

u for all u ∈ U (i.e., the
individual objects that are put into the knapsack v′). In
the second step, the algorithm updates the profit of each
object Πvu. For simplicity, let Π be the set of controllable
flows. The profit of an individual object p(Πviuj) is updated
as p(Πviuj) = |Π

vi
uj − Π|. The algorithm will terminate until

all switches have been checked. The detailed algorithm is
described in Alg. 2.

C. Performance Analysis

In the following, QG denotes the set of controllable flows
by Alg. 2. In the lth iteration, the controllable flow set is
G′l, and the incremental profit is denoted as X

′
l . That is,

X ′l = ω(G
′
l\
∪l−1
i=1G

′
i), where ω(·) denotes its cardinality.

Lemma 2: Alg. 2 achieves a (2 + ϵ)-approximation.

2345
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:29:03 UTC from IEEE Xplore. Restrictions apply.

6

Algorithm 2 Maximizing Controllable Flows for WEI-B

1: Π = Φ
2: while |V | > 0 do
3: Step 1: Choosing a switch with the maximum profit
4: for each switch vi ∈ V do
5: Apply the FPTAS method of 0-1 knapsack to com-

pute the maximum profit p(vi) for each switch vi
with knapsack size s(vi)− w(vi)

6: Select switch v′ with the maximum profit
7: The installed wildcard rules on v′ is denoted as R′

8: for each wildcard rule ru ∈ R′ do
9: Π = Π+Πv

′

u

10: V = V − {v′}
11: Step 2: Updating the profit of each flow set
12: for each switch vi ∈ V do
13: for each wildcard rule rj ∈ R do
14: p(Πviuj) = |Π

vi
uj − Π|

Proof: Let ψ be the approximation ratio of the FPTAS
algorithm for 0-1 knapsack. Consider an instant that Alg. 2
has executed l-1 iterations. In the lth iteration, the algorithm
chooses the switch vl′ . Assume that the optimal solution
will select a flow set, denoted as Ol, from switch vl′ . If
we choose Ol instead of G′l in this iteration, the incremental
profit becomes ω(Ol\

∪l−1
i=1G

′
i), denoted as X

′′
l. Obviously,

we have ψ ·X ′l ≥ X ′′l = ω(Ol\
∪l−1
i=1G

′
i) ≥ ω(Ol\QG). It

follows
ψ · ω(QG) =

�n

l=1
ψ ·X ′l ≥

�n

l=1
ω(Ol\QG)

=
�n

l=1
ω(Ol\QG) ≥ ω(

�n
l=1
Ol\QG)

= ω(OPT\QG) ≥ [ω(OPT)− ω(QG)] (3)
Thus, we have

(1 + ψ) · ω(QG) ≥ ω(OPT) (4)
The FPTAS method achieves the (1+ϵ)-approximation for
0-1 knapsack problem [27], where ϵ is an arbitrarily small
value. Thus, by Eq. (4), the proposed algorithm achieves (2+
ϵ)-approximation for our problem.

V. EXACT-MATCH ENTRY INSTALLMENT

In this section, we describe step 2 of HiFi: exact-match
entry installment, which is triggered by new packet arrival
events. When a packet arrives at a switch and there is no
matched entries, the switch will report the packet header
to the controller. The controller will install exact-match
entries to achieve specific application requirements, e.g., load
balancing or throughput maximization.

A. Exact-Match Entry Installment for Load Balancing

This section studies the exact-match entry installment for
load balancing (MT-LB) as a typical case. To obtain better
network performance, we should dynamically update the flow
routes so as to adapt to the traffic dynamics [28]. Thus,
instead of the long-term traffic observation in Section III,
we care for the current flow set Γ, and the traffic size (or

intensity) of each flow γ ∈ Γ is denoted by f(γ). With the
system running, the flow set Γ will be updated.
We first introduce how to construct a feasible path set Pv2v1
from switch v1 to switch v2, which is determined by the
management policies and performance objectives. If there
are too many feasible paths that satisfy the management
policies, we may include only a certain number of the best
ones under a certain performance criterion, such as having
the shortest number of hops or having the large capacities.
Then, we explore a feasible path set Pγ for each flow γ.
Under the proposed HiFi framework, when a flow γ arrives
at the network, since some wildcard entries may be installed
on some switches, flow γ may be directly forwarded to a
switch, denoted by vγ , in which there is no matching entry
for this flow. The forwarding path from the source to switch
vγ is denoted by pwγ . Then, we derive a feasible path set Pγ
as follows: for each path p ∈ Pe(γ)vγ , where e(γ) denotes the
egress switch of flow γ, we construct a path p′ by combining
pwγ , p, and the link between the egress switch e(γ) and the
destination d(γ). If this path has no loop, we add it to Pγ .
The MT-LB problem will select one feasible path from Pγ
for each flow γ to achieve load balancing. Let c(e) and l(e)
denote the capacity of link e and the traffic load on link e,
which is available to the controller by OSPF-TE [13]. The
load-balancing factor λ is defined as λ = max{ l(e)c(e) , ∀e ∈
E}. We expect to minimize the load-balancing factor, i.e.,
min λ.
We give the formulation of the MT-LB problem. Let an
indicator variable ypγ ∈ {0, 1} denote whether flow γ will
be routed on a path p ∈ Pγ or not. Let I(γ, p, v) be a
binary value for exact-match entry installment: if switch v
has already installed the wildcard entry for destination d(γ),
and the next hop of this wildcard entry point to overlaps
with the next hop of switch v on path p, then there is
no need to install an exact-match entry on switch v, i.e.,
I(γ, p, v) = 0; otherwise I(γ, p, v) = 1. MT-LB solves the
following problem:

min λ

S.t.

∑
p∈Pγ y

p
γ = 1, ∀γ ∈ Γ

∑
γ∈Γ
∑
p∈Pγ :v∈p y

p
γ · I(γ, p, v) ≤ δ(v), ∀v ∈ V∑

γ∈Γ
∑
p∈Pγ :e∈p y

p
γf(γ) ≤ λ · c(e), ∀e ∈ E

ypγ ∈ {0, 1}, ∀p, γ
(5)

The first set of equations requires that each flow γ ∈ Γ will
be forwarded through a single path from Pγ . The second set
of inequalities describes the flow-table size constraint on each
switch v, where δ(v) is the number of residual flow entries
on switch v, with δ(v) ≤ s(v). The third set of inequalities
states that the traffic load on each link e should not exceed
λ · c(e), where λ is the load-balancing factor (less than or
equal to 1). The objective is to minimize the load-balancing
factor λ.
Observing Eq. (5), there are standard rounding-based ap-
proximate methods for this problem. An example is relax-
ation and random rounding algorithm [29], denoted by Alg.

2346
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:29:03 UTC from IEEE Xplore. Restrictions apply.

7

3. It relaxes Eq. (5) by replacing the fourth line of integer
constraints with 0 ≤ ypγ ≤ 1, and obtains a linear program-
ming problem. We can solve it using the linear programming
solver, and derive the optimal solution. Then, we round ypγ to
zero or one probabilistically based on its fractional value. We
use this method in the numerical evaluation of the proposed
work and it produces very good results.
In the practical scenarios, many flows may burst in the
network, and the controller is unable to provide exact-
match entries for each individual flow due to flow-table size
constraint. To deal with this case and make our solution more
practical, we will choose some switch pairs with less traffic
amount, and deploy default paths for these flows. Meanwhile,
the controller removes the exact-match rules for these flows
so as to set aside some entries for accommodating potential
arrival flows.

VI. PERFORMANCE EVALUATION
A. Performance Metrics and Methodology

In this section, we evaluate HiFi through small-scale
testbed implementation and large-scale simulations, and com-
pare it with the following existing approaches. (1) RLJD
[12] installs exact-match entries on all switches along each
forwarding path. To enhance the competitiveness of this
algorithm, we modify the per-flow routing strategy in the
final step by heuristically aggregate per-flow entries based on
destination while for each flow leaving at least one switch
to keep the per-flow entry in order to satisfy the “control-
lable” constraint. After this modification, RLJD can achieve
better performance than the original one. (2) Presto [19] is
designed for hierarchical networks to achieve load balancing.
Specifically, it installs exact-match entries on edge switches
to control new arrival flows and installs wildcard entries
on internal switches to relieve the load of core switches.
For a fair comparison, we also extend this design to non-
hierarchical network. Specifically, we install an exact-match
entry only on the egress switch for each flow and install
wildcard entries on other switches.
To compare the performance of three algorithms, we use
the following performance metrics in our evaluation: (1)
The number of Packet-in messages; (2) The number of
controllable flows; (3) The number of required flow entries;
(4) The control overhead (the communication traffic volume
to/from the controller); (5) Flow setup delay; (6) Packet
loss ratio; (7) The maximum throughput of the network;
and (8) Load-balancing factor λ. When a flow arrives at a
switch, and it does not match any existing entries on the flow
table, the OpenFlow Agent of the switch will encapsulate the
packet into a Packet-in message and send to the controller
for requesting routing strategy. We measure the maximum
number of encapsulated Packet-in messages on any switch
during the simulation as the first metric. Once receiving
the Packet-in message of this flow, the controller controls
this flow, then we obtain the second metric. The controller
computes the route and sends Flow-mod commands to cor-
responding switches for entry installment. We measure the
maximum number of required flow entries on any switch at

any time and the maximum communication traffic volume
to/from the controller during the simulation as the third
and fourth metrics. Once the flow entries are installed, the
flow can be forwarded to destination according to matched
flow entries. We measure the maximum flow setup delay
and packet loss ratio of all flows as the fifth and sixth
metrics. Meanwhile, we measure the maximum throughput
that the network can support and the traffic link f(e) of
each link e. Then, we compute the load-balancing factor
λ = max{f(e)/c(e), e ∈ E}.
The simulations are performed under two scenarios. The
first scenario has no flow-table size (FTS) constraint, as-
suming that the switches have sufficient entries to handle
all flows. This hypothetical scenario tests how well three
algorithms perform when the FTS is sufficient. The second
scenario has an FTS constraint and tests the performance of
these algorithms when the FTS is limited.

B. Testbed Evaluation

1) Implementation On the Platform: Our testbed is built
on a real topology obtained from the Internet Topology Zoo
[30], called Epoch [31].The SDN platform is mainly com-
posed of three parts: a controller, 6 Open vSwitches (Version
2.5.3) [32] and 5 virtual machines (acting as terminals). Each
Open vSwitch and its connected virtual machines are run on
a server with a core i5-3470 processor and 8GB of RAM.
The link capacity is set as 200Mbps for simplicity. We use
the OpenDaylight Lithium-SR1 release [33] as the controller
software running on a server with a core i7-8700k processor
and 16GB of RAM.
We implement our tests with a set of synthetic and realistic
workloads. Similar to previous works [18] [19] , our synthetic
workloads include: (1) random flows, each terminal sends to
several random terminals; (2) server flows, random terminals
send the traffic to a number of designated terminals. These
flows can simulate the traffic of mail servers and web servers;
(3) associative flows, these flows simulate the communi-
cations between a terminal and a number of designated
terminals, e.g., traffic between the finance department and
the database.
2) Testing Results: We run four sets of experiments on
the SDN platform and execute each experiment 50 times and
average the numerical results for accuracy. The first two sets
of experiments are performed without flow-table size (FTS)
constraint, the default number of flows is set as 300. The last
two sets of experiments are performed with flow-table size
(FTS) constraint and the default flow-table size is set as 100.
In the first experiment, we observe the number of required
flow entries and the number of Packet-in messages on all
switches. The testing results are shown in Figs. 3-4. Fig.
3 indicates that HiFi, Presto and RLJD need 69, 80 and
172 flow entries at most, respectively, which means that
our proposed algorithm can reduce the maximum number
of required flow entries by about 15% and 60% compared
with Presto and RLJD, respectively. Fig. 4 shows that HiFi,
Presto and RLJD generate 129, 149 and 231 Packet-in
messages at most on any switch during the experiment,

2347
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:29:03 UTC from IEEE Xplore. Restrictions apply.

8

 0

 50

 100

 150

 200

 250

V1 V2 V3 V4 V5 V6 Max

N
u
m

b
e
r

o
f

F
lo

w
 E

n
ti

re
s

Swith ID

RLJD

Presto

HiFi

Fig. 3: No. of Flow Entries
on Each Switch

 0

 50

 100

 150

 200

 250

 300

 350

V1 V2 V3 V4 V5 V6 Max

N
u
m

b
e
r

o
f

P
a
c
k
e
t-

in

Swith ID

RLJD

Presto

HiFi

Fig. 4: No. of Packet-in on
Each Switch

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 100 200 300 400 500 600

P
a
c
k

e
t

L
o

s
s
 R

a
ti

o

Number of Flows

RLJD

Presto

HiFi

Fig. 5: Packet Loss Ratio vs.
No. of Flows

 0

 30

 60

 90

 120

 150

 100 200 300 400 500 600

F
lo

w
 S

et
u

p
 D

el
ay

 (
m

s)

Number of Flows

RLJD

Presto

HiFi

Fig. 6: Flow Setup Delay vs.
No. of Flows

 0

 100

 200

 300

 400

 500

 600

100 200 300 400 500 600

C
o

n
tr

o
ll

a
b
le

 F
lo

w
s

Number of Flows

RLJD

Presto

HiFi

Fig. 7: No. of Controllable
Flows vs. No. of Flows

 0

 100

 200

 300

 400

 500

 600

 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(M

b
p
s)

Number of Flows

HiFi

Presto

RLJD

Fig. 8: Throughput vs. No.
of Flows

respectively. That is because HiFi has pre-deployed some
wildcard entries, which has reduced the interaction between
data plane and control plane when flows arrive at switches.
The work presented in [35] has illustrated that encapsulating
Packet-in messages is time-consuming and cpu-consuming
for low end CPU of switches and most commodity switches
can only encapsulate Packet-in messages at the rate of 150
per second. The following experiments also indicate that too
many Packet-in messages may cause high packet loss ratio
and latency.
In the second experiment, we observe the packet loss ratio
and flow setup delay by changing the number of flows in the
network. As shown in Figs. 5-6, when we generate 500 new
flows simultaneously using iperf3.3 in the network, HiFi can
reduce the maximum packet loss ratio of any flows by about
29% and 19% compared with RLJD and Presto, respectively.
Meanwhile, HiFi only needs 74ms at most to setup a new
flow while RLJD needs 154ms and Presto needs 88ms to
setup a new flow. Thus, the less interaction between data
plane and control plane (i.e., less Packet-in messages and
less Flow-mod commands/flow entries) of HiFi will make
the lower packet loss ratio and lower flow setup delay.
The third set of experiments compares the number of
controllable flows by varying the number of flows in the
network. As shown in Fig. 7, when there are 100 flows in
the network, all algorithms can control all flows with fine-
grained management. That is because the flow-table size
(i.e.,100) is sufficient to handle all flows (i.e.,100 flows).
However, when there are more flows in the network, HiFi can
control more flows than the other algorithms under flow-table
size constraint. That is because HiFi requires fewer entries
per flow on average than RLJD, and distributes exact-match
entries on all switches more evenly than Presto.
The last set of experiments observes the maximum

throughput in the network by changing the number of flows
in the network. As shown in Fig. 8, we set the flow-table size
as 100. Due to our proposed system uses fewer flow entries,
HiFi can achieve higher network throughput compared with
other algorithms with the increasing of flows. For example,
when there are 500 flows in the network, HiFi improves the
network throughput by about 122% and 24% compared with
RLJD and Presto, respectively.

C. Simulation Evaluation

1) Simulation Settings: We select two practical topologies.
The first topology, denoted as (a), is a hierarchical Fat-
Tree topology [20]. This topology has been widely used in
many datacenter networks. It contains 16 core switches, 32
aggregation switches, 32 edge switches and 128 servers. The
second one is a non-hierarchical campus network from [36],
denoted as (b), containing 100 switches and 200 terminals.
Every point in this section is averaged by 100 times. The
link capacity is set as 1Gbps for simplicity. The flow size is
drawn from random flows, server flows and associative flows
discussed in Section VI-B1.
2) Performance Comparison Without FTS Constraint: The
first set of simulations compares HiFi, RLJD and Presto in
the scenario without FTS constraint. The results are shown
in Figs. 9-11. Fig. 9 shows that HiFi uses much fewer entries
than RLJD and Presto. For example, when there are 12×104
flows in the Fat-Tree network, HiFi reduces the maximum
number of required entries by about 45% and 69% compared
with Presto and RLJD, respectively.
We plot the load-balancing factor of these algorithms in
Fig. 10. To observe the performance of different applications
(i.e., load-balancing or throughput maximization), we add
another benchmark, denoted as OPT. We note that OPT may
denote different solutions for various applications. For load
balancing, OPT can be derived by solving relaxed MT-LB
using a linear program solver. For network throughput, the
OPT solution will gradually increase the traffic intensity until
the link capacity is fully utilized.This figure shows that our
solution only increases load-balancing factor by about 3%
and 5% compared with RLJD and OPT, respectively. Be-
sides, HiFi achieves better load-balancing factor than Presto,
especially in a non-hierarchical campus network.
Fig. 11 shows that HiFi can achieve similar control
communication overhead compared with Presto and achieve
much smaller control communication overhead compared
with RLJD. As the number of flows increases, RLJD installs

2348
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:29:03 UTC from IEEE Xplore. Restrictions apply.

9

2

4

6

8

10

12

3 6 9 12 15 18M
ax

.
F

lo
w

 E
n
tr

ie
s

(
 1

0
 3

)

Number of Flows (10
4
)

RLJD

Presto

HiFi

2

4

6

8

10

3 6 9 12 15 18M
ax

.
F

lo
w

 E
n
tr

ie
s

(
 1

0
 3

)

Number of Flows (10
4
)

RLJD

Presto

HiFi

Fig. 9: Max. Flow Entries vs. No. of Flows Without FTS
Constraint. Left plot: (a) Fat-Tree; right plot: (b) Campus.

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 6 9 12 15 18

L
o
ad

-B
al

an
ci

n
g

 F
ac

to
r

Number of Flows (10
4
)

Presto

HiFi

RLJD

OPT

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 6 9 12 15 18

L
o
ad

-B
al

an
ci

n
g

 F
ac

to
r

Number of Flows (10
4
)

Presto

HiFi

RLJD

OPT

Fig. 10: No. of Flows vs. λ Without FTS Constraint. Left
plot: (a) Fat-Tree; right plot: (b) Campus.

 0

 100

 200

 300

 400

 500

 600

3 6 9 12 15 18C
o
n

tr
o

l
O

v
er

h
ea

d
 (

M
b

p
s)

Number of Flows (10
4
)

RLJD

HiFi

Presto

 0

 100

 200

 300

 400

 500

 600

3 6 9 12 15 18C
o
n

tr
o

l
O

v
er

h
ea

d
 (

M
b

p
s)

Number of Flows (10
4
)

RLJD

HiFi

Presto

Fig. 11: Control Overhead vs. No. of Flows Without FTS
Constraint. Left plot: (a) Fat-Tree; right plot: (b) Campus.

 0

 3

 6

 9

 12

 15

 18

3 6 9 12 15 18C
o
n

tr
o

ll
ab

le
 F

lo
w

s
(

 1
0
 4

)

Number of Flows (10
4
)

HiFi

Presto

RLJD
 0

 3

 6

 9

 12

 15

3 6 9 12 15 18C
o
n
tr

o
ll

a
b

le
 F

lo
w

s
(

 1
0
 4

)

Number of Flows (10
4
)

HiFi

Presto

RLJD

Fig. 12: Impact on No. of Controllable Flows With FTS
Constraint. Left plot: (a) Fat-Tree; right plot: (b) Campus.

 0

 15

 30

 45

 60

 75

3 6 9 12 15 18

T
h
ro

u
g
h

p
u
t

(G
b
p
s)

Number of Flows (10
4
)

OPT

HiFi

Presto

RLJD
 0

 15

 30

 45

 60

3 6 9 12 15 18

T
h
ro

u
g
h

p
u
t

(G
b
p
s)

Number of Flows (10
4
)

OPT

HiFi

Presto

RLJD

Fig. 13: Throughput vs. No. of Flows With FTS Constraint.
Left plot: (a) Fat-Tree; right plot: (b) Campus.

more flow entries than HiFi and Presto, which results in
higher control overhead than two other solutions. For ex-
ample, when there are 12×104 flows in the campus network,
the control overhead of RLJD, Presto and HiFi will reach
421Mbps, 234Mbps and 253Mbps, respectively.
3) Performance Comparison With FTS Constraint: The
second set of simulations compares HiFi, RLJD and Presto
in the scenario with FTS constraint, where the FTS constraint
is set as 4,000 on each switch by default [14]. We first
compare the number of controllable flows by changing the
number of flows in the network. The results are shown in
Fig. 12. We claim that our solution can control more flows
than the other two algorithms. For example, as shown in
the right plot of Fig. 12, when there are 15×104 flows,
our proposed algorithm can control about 14×104 flows
while the other two algorithms can only control 7.1×104
and 9.5×104 flows, respectively. It means that HiFi increases
the number of controllable flows by about 48% and 97%
compared with Presto and RLJD, respectively. Fig. 13 shows
that when the number of flow entries is constant (i.e., 4,000),
the network performance (e.g., throughput) of our algorithm
is much better than that of Presto and RLJD. For example,
when there are 15×104 flows in the Fat-Tree network, our
proposed algorithm can improve throughput by about 28%

and 77% compared with Presto and RLJD, respectively.
Moreover, HiFi can achieve similar throughput compared
with OPT, which means high effectiveness of our proposed
approximation algorithms.
From these simulation results, we can draw some con-
clusions. First, from Figs. 9-11, when there is no FTS
constraint, HiFi can reduce the number of maximum flow
entries by about 45% and 69% compared with Presto and
RLJD, respectively. Accordingly, HiFi decreases the control
overhead by about 40% compared with RLJD. Besides, our
proposed algorithm can achieve similar performance (e.g.,
load-balancing factor, throughput) compared with RLJD and
OPT. Moreover, HiFi can improve network performance by
about 38% compare with Presto while using a similar (or less)
number of flow entries in a non-hierarchical network. Second,
from Figs. 12-13, when the FTS is limited, our algorithm can
improve the number of controllable flows by about 48% and
97% and improve the throughput by about 28% and 77%
compared with Presto and RLJD, respectively.

VII. CONCLUSION
In this paper, we have designed HiFi, which provides fine-
grained flow management with a limited number of flow
entries using a novel hybrid (wildcard and exact-match) rule
placement scheme. Several algorithms with bounded approx-
imation factors have been designed. We have implemented
HiFi on our commodity SDN platform, and simulation results
have shown the high efficiency of HiFi.

VIII. ACKNOWLEDGEMENT
This research of Zhao, Xu and Huang is partially supported
by the National Science Foundation of China (NSFC) un-
der Grants 61822210, U1709217, and 61936015; by Anhui
Initiative in Quantum Information Technologies under No.
AHY150300. The research of Qiao is supported in part by
National Science Foundation (NSF) Grant CNS-1626374.

2349
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:29:03 UTC from IEEE Xplore. Restrictions apply.

10

REFERENCES

[1] D. Sajjadi, R. Ruby, M. Tanha, and J. Pan, “Fine-grained traffic
engineering on sdn-aware wi-fi mesh networks,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 8, pp. 7593–7607, 2018.

[2] X. T. Phan and K. Fukuda, “Sdn-mon: Fine-grained traffic monitoring
framework in software-defined networks,” Journal of Information
Processing, vol. 25, pp. 182–190, 2017.

[3] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is sampled
data sufficient for anomaly detection?” in Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, 2006, pp. 165–176.

[4] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in ACM SIGCOMM, 2013, pp. 15–26.

[5] Y. Zhang, “An adaptive flow counting method for anomaly detection
in sdn,” in Proceedings of the ninth ACM CoNEXT, 2013, pp. 25–30.

[6] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in IEEE INFOCOM, 2013, pp. 2211–2219.

[7] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience
with a globally-deployed software defined wan,” in ACM SIGCOMM,
2013, pp. 3–14.

[8] T. Pan, X. Guo, C. Zhang, J. Jiang, H. Wu, and B. Liuy, “Tracking
millions of flows in high speed networks for application identification,”
in INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp. 1647–1655.

[9] A. Craig, B. Nandy, I. Lambadaris, and P. Ashwood-Smith, “Load
balancing for multicast traffic in sdn using real-time link cost modifica-
tion,” in Communications (ICC), 2015 IEEE International Conference
on. IEEE, 2015, pp. 5789–5795.

[10] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang,
“Incremental deployment and throughput maximization routing for a
hybrid sdn,” IEEE/ACM Transactions on Networking (TON), vol. 25,
no. 3, pp. 1861–1875, 2017.

[11] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen, “Is every
flow on the right track?: Inspect sdn forwarding with rulescope,” in
Computer Communications, IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on. IEEE, 2016, pp. 1–9.

[12] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the effect of
forwarding table size on sdn network utilization,” in INFOCOM, 2014
Proceedings IEEE. IEEE, 2014, pp. 1734–1742.

[13] D. Katz, K. Kompella, and D. Yeung, “Traffic engineering (te) exten-
sions to ospf version 2,” RFC 3630, September, Tech. Rep., 2003.

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “Devoflow: Scaling flow management for high-
performance networks,” in ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4. ACM, 2011, pp. 254–265.

[15] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Officer:
A general optimization framework for openflow rule allocation and
endpoint policy enforcement,” in Proc. IEEE INFOCOM, 2015, pp.
478–486.

[16] H. Xu, H. Huang, S. Chen, G. Zhao, and L. Huang, “Achieving high
scalability through hybrid switching in software-defined networking,”
IEEE/ACM Transactions on Networking, vol. 26, no. 1, pp. 618–632,
2018.

[17] B. Claise, “Cisco systems netflow services export version 9,” 2004.
[18] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-defined

networking through hybrid switching,” in Proc. IEEE INFOCOM,
2017.

[19] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” ACM
SIGCOMM Computer Communication Review, pp. 465–478, 2015.

[20] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in ACM SIGCOMM Computer
Communication Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[21] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“Hyperx: topology, routing, and packaging of efficient large-scale
networks,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. ACM, 2009, p. 41.

[22] H. Xu, Z. Yu, C. Qian, X.-Y. Li, and Z. Liu, “Minimizing flow statistics
collection cost of sdn using wildcard requests,” in IEEE INFOCOM,
2017, pp. 1–9.

[23] P. Cortez, M. Rio, M. Rocha, and P. Sousa, “Internet traffic forecasting
using neural networks,” in The 2006 IEEE International Joint Confer-
ence on Neural Network Proceedings. IEEE, 2006, pp. 2635–2642.

[24] A. Azzouni and G. Pujolle, “Neutm: A neural network-based frame-
work for traffic matrix prediction in sdn,” in NOMS 2018-2018
IEEE/IFIP Network Operations and Management Symposium. IEEE,
2018, pp. 1–5.

[25] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“Simple-fying middlebox policy enforcement using sdn,” ACM SIG-
COMM computer communication review, vol. 43, no. 4, pp. 27–38,
2013.

[26] G. P. Ingargiola and J. F. Korsh, “Reduction algorithm for zero-one
single knapsack problems,” Management science, vol. 20, no. 4-part-i,
pp. 460–463, 1973.

[27] M. Bansal and V. Venkaiah, “Improved fully polynomial time ap-
proximation scheme for the 0-1 multiple-choice knapsack problem,”
International Institute of Information Technology Tech Report, 2004.

[28] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” in Proc. ACM SIGCOMM, 2014, pp. 539–550.

[29] T. Friedrich and T. Sauerwald, “Near-perfect load balancing by ran-
domized rounding,” in Proceedings of the forty-first annual ACM
symposium on Theory of computing. ACM, 2009, pp. 121–130.

[30] “The internet topology zoo,” http://www.topology-zoo.org/.
[31] “The epoch topology,” http://www.topology-zoo.org/maps/Epoch.jpg.
[32] “Open vswitch: open virtual switch,” http://openvswitch.org/.
[33] “Linux foundation collaborative project,” http://opendaylight.org/.
[34] “Iperf3.3,” http://software.es.net/iperf/news.html#iperf-3-3-released.
[35] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Scotch:

Elastically scaling up sdn control-plane using vswitch based overlay,”
in Proceedings of the 10th ACM International on Conference on
emerging Networking Experiments and Technologies. ACM, 2014,
pp. 403–414.

[36] “Simulating network topologies,” http://www.ecse.monash.edu.au/
twiki/bin/view/InFocus/LargePacket-switchingNetworkTopologies.

2350
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 06,2020 at 01:29:03 UTC from IEEE Xplore. Restrictions apply.

